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Generalized Irreducible Memory Function 
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In a previous paper we presented a general scheme to reduce the memory func- 
tion in nonequilibrium statistical physics for purely dissipative cases with 
detailed balance. Here we simplify and generalize further this scheme to include 
cases other than purely dissipative ones. As an illustration we discuss simple 
dense fluids. 
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1. I N T R O D U C T I O N  

The irreducible memory  function was introduced by Cichocki and Hess ~11 
in the theory of  colloidal suspension and its usefulness as a starting point  
for approximat ions  was recognized. We gave a formal recipe for con- 
structing irreducible memory  functions for general dissipative stochastic 
systems with detailed balance. ~21 In this article we show that this recipe can 
be further extended to include the case's which are no longer purely dis- 
sipative, and can also contain memory  effects. In Section 2 we present a 
general formulat ion where we make extensive use of  the projector tech- 
nique in nonequil ibr ium statistical physicsJ 3~ In Section 3 we illustrate the 
general approach  for the case of  dense fluids. This also shows the way to 
deal with purely nondissipative cases, for which direct application of  the 
recipe of  Section 2 does not  lead to useful results. The paper  is concluded 
in Section 4. 
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2. I R R E D U C I B L E  M E M O R Y  F U N C T I O N  

Here we consider an evolution equation of general type with memory 
for the distribution function or functional D(a, t) which reads as follows: 

0 t )=f~dt 'co(a , t - t ' )D(a, t ' )  (1) 

where a is a set of variables or fields that describe a state of the system and 
og(a, t -  t') is the time evolution operator with memory which acts on a. 
A special case of Eq. (1) without memory effects is the well-known kinetic 
Ising model. The following formal manipuration works as long as the "first 
moment" E(z) defined below by Eq.(15) does not identically vanish. 
However, the true value of the formal results can be judged only by 
applications to various concrete situations. 

For  our purpose it is convenient to work with the Laplace transforms, 
which are denoted with superscripts L. That  is, for any X(a, t) we have 

Xm(a, Z) = dt e--"X(a, t) (2) 

Thus (1) is written, denoting coL(a, z) by g2(a, z), as 

[ z-- O(a, z)] DL(a, z) = D(a, O) (3) 

Hence the formal solution of (3) is 

DL(a, Z) = [Z--I2(a, z)] - j  D(a, O) (4) 

In the following we often replace the argument a simply by a dot, which 
may even be suppressed when confusion does not arise. We also assume 
that we have the equilibrium distribution De(a) which is a stationary dis- 
tribution o f ( l ) .  Now, let A(a) be a physical quantity expressed as a func- 
tion or functional of a such that its equilibrium average vanishes and its 
equilibrium variance is normalized to unity. That is, denoting an equi- 
librium average by an angular bracket and complex conjugate by an 
asterisk, 

<A(a)>=(A*(a)>=O, <A(a)A*(a)>=l 

We then define a correlator C(t) by 

C( t )=  <A(., t) A*(., 0)> =- I da A(a) D A(a, t) (5) 
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where DA(a, t) satisfies (1) with the initial condition 

DA(., 0 ) = A * ( . )  D,,(.) (6) 

Here we introduce the bra and ket notation by 

< X(a) . . . .  f da X(a)... (7) 

...X(a) > = f ...X(a) De(a) da (8) 

Thus <X(a)> defines the equilibrium average of X(a). 
The normalization of D(-, t) and the stationarity of D,,(. ) then require 

<O(z) = t2(z)) = 0 (9) 

where X(a) can be an operator. We also define a projector ~ acting in the 
space of the state vectors (7) and (8) by 

@ = A * > < A  (I0) 

Then we readily find in view of < A > = < A* > = 0 

CZ(z) = < A [ z - 1 2 ( z ) ]  - t  A*> = < A ~ [ z - f 2 ( z ) ]  - '  ~ a * >  (11) 

Here we employ the following operator identityl41: 

~ [ z -  n(z)] -I ~= { z - ~ n ( z )  ~ , -  ~n(z)[ z -  ~n(z) ] -' .~n(z) ~'} -' 

(12) 

with . ~ - 1 - 9  ~ a complementary projector} Note that an operator 
sandwiched between two ~ is no longer an operator. That is, for any 
operator X we have 

~X~ = <AXA*> ~ (13) 

Thercfore, ( l l ) is transformed into 

CL(z) = [ z -- E(z) -- M(z)] -I (14) 

2 If we wish, .~ can be replaced by -~ m l - ) <  - ~  since )< juxtaposed to g2(z) vanishes by 
(9). 
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E ( z )  - < A~(z) A*> (15) 

M(z) - <Ag2(z)[z - 9Q(z)] - t  992(z) A*) (16) 

Equations (14)-(16) provide a generalization of the usual memory function 
formalism where E(z) is the so-called first moment frequency, which now 
depends on z, and M(z) is the memory function. 

The next step is to split (2(z) into two parts: 

where 

~(z) = Q0(z) + ~ , (z)  (17) 

~o(z)=-f2(z) A *)  E(z) -~ ( Af2(z) (18) 

which also defines f2L(z). Noting that _~g2(z) in the middle of (16) can be 
replaced by 9.g2(z) .~, we define 

~(z) =- ~Af2(z) ~ (19) 

~j(z)  =- 9.g2j(z) .9, j = 0, 1 (20) 

Then, (16) can be transformed using another operator identity as follows: 

[ z - - ~ ( z ) ] - ' = [ z - ~ , ( z ) ] - l  + [ z - - ~ ( z ) ] - '  ~o(Z)[Z--~ , (z )]  -I (21) 

Thus we find 

M(z) = Mir(z) + M(z) E(z) -1 Mir(z) (22) 

where M~(z) is the irreducible memory function defined by 

M~'(z) =_ (Af2(z)[z  - ~, (z ) ]  - '  .{g2(z) A*) (23) 

M(z) is then expressed in terms of Mi~(z) as 

M(z) = [ 1 - Mi~(z) E(z) -I ] - i  Mi,(z) (24) 

Hence CL(z) becomes 3 

e L ( z )  = { z -  E(z)[ 1 - E ( z ) - '  Mi'(z)]  - ' }  - '  (25) 

Here we wish to correct two errors in Ref. 2. In the line next to Eq. (2.29), "neglected" 
should read "replaced." On the Ihs of  Eq. (2.44), [1 -1 ,. _ - i  - E ,  M.,,(_)] should be replaced by 

i r  _ [ I - E TIM d_)]. 
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This result generalizes that of Ref. 2. for purely dissipative cases and the 
derivation is simplified as well. As in the previous case, utility of (24) is 
most evident when we deal with near freezing. That  is, C(t) develops a very 
long tail in which C(t) approaches a finite value, say f ,  at sufficiently long 
times, although C(t) may eventually decay to zero at infinity. Then, for 
sufficiently small values of lzl, which corresponds to the time window of 
near freezing, we will find 

CL(z) ~-- f /z (26) 

and hence 

E(z) + M(z) "~ [ ( f -  1) / f ]  z 

and 

Mi~(z) ~ [ f / ( f - -  1)] E(z)2/z 

(27) 

(28) 

If this is the case, any sensible approximation for E(z) and especially for 
M(z) to describe near freezing must be such that the delicate cancellation 
of E(z) and M(z) as Izl--' 0 is guaranteed. On the other hand, when E(z) 
always remains finite, (22) simply requires M~r(z) to tend to diverge for 
small Izl, Thus, even a crude approximation for M~r(z) leading to its 
divergence serves our purpose. 

3. CLASSICAL FLUIDS 

We illustrate the foregoing general formalism for the case of a classical 
fluid consisting of N particles of mass m. We then use the notations r N and 
pN to denote the sets of the position vectors r~ ..... rN and the momentum 
vectors Pt ..... PN of the N particles, respectively. We now choose 

A = n k / ~  (29) 

where nk is the Fourier component of the particle number density fluctua- 
tion expressed in terms of r N, and S(k) is the usual scattering structure 
function: 

S(k) = ( }nk I'-)/N (30) 

We start from the Liouville equation for the N-particle phase space 
distribution function l~N(t)=/3N(r N, pN, t) as follows: 

a ^ 
-~ D~c(t) = L,vl)N(t) (31) 
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with L N = L ( r  N, pN) the Liouville operator. We note that the Laplace 
transform of the correlator C(t) takes the form, using the bra and ket 
notaton introduced in the preceding section, 

EL(z)---- <A(z--LN)-' A*> = <A~(z-LN)-' ~A*> 

= <A~(Z-LN)-' ~A*> (32) 

where ~' is the projector defined by (10). Another projector ~,  which 
projects out momenta, is defined for any phase space function -~'N by 

~ 'N  = ~N(D N) f dP N ~'~N (33) 

where ~N(p N) is the normalized Maxwell momentum distribution function. 
Let us first deal with ~ ( z -  LN)- ~ ~. Using the operator identity (12) 

where ~ and f2(z) there are replaced by ~ and LN, respectively, we find, 
as will be briefly explained below, 

~(z--tN)-' ~= [z--O(z)]-' (34) 

where, denoting 1 - . ~  as ~, 

pN pN 
I2(z) = V N. I dpN- (z- -~LN)-I .~N(pN) --. [V N + fl(VNUN)] 

m m 
(35) 

and V N represents the N vectors consisting of N gradient operators 
V~, V2 ..... VN, and UN(rl, r2 ..... ru) is the N-particle potential energy, and 
fl the inverse of the Boltzmann constant times the absolute temperature. 
Derivation of (34) makes use of the following facts. First, since LN changes 
sign under time reversal, we must have ~ L N ~ = 0 .  Second, in disen- 
tangling the expression ~ L u ( z -  ,~LN)-' ~LN~, we use, for an arbitrary 
phase space function ~', 

pN 
LN~.,~= . [vN + fl(VNUN) ] ~ 

m 

#LN~'=  --#N(pN) VN. f dp'N Pm~N ~'(p'N, r'N ) 

These results can be readily obtained using the explicit form of LN. Hence 
(32) is expressed as 

CL(z) = <A~[z- s -' ~A*> (36) 
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where the bra and ket notation are now referred to the N-particle con- 
figuration space instead of the phase space. We can then use the general 
formulation of the preceding section. Note that we cannot do this directly 
for the third member of (32) since E(z) simply vanishes due to time- 
reversal symmetry. 

The Smoluchowsky model of colloidal suspension without the 
hydrodynamic interaction readily follows if we replace the expression in 
(34) sandwiched between V N and [vN+fl(VNUN)] by D01N, where Do is 
a constant and 1 ̂ ' is a unit dyadic in the 3N-dimensional configuration 
space. In this case, it is known that D O is responsible for both the friction 
constant acting on a Brownian particle and the random force of thermal 
origin due to the fluctuation-dissipation theorem. 

In our general case, the situation is not clear and here we only make 
a few remarks. For  the values of [z[ much smaller than 090=ko/ 
[flmS(ko)] ,/2 with ko near the first maximum of S(k), which corresponds 
to the frequency of the. local oscillation of atoms, we may use the 
approximation similar to that mentioned above in connection with the 
Smoluchowsky equation. This long-time behavior was already considered 
elsewhere.(5.6) For  Izl ,> ~Oo we have 

E(~) ~ -~/z 

If IM~r(z)/E(z)l can be neglected, that is, IMi~(z)l is much smaller than 
~O2o/Izl, we w o u l d  have 

L ,-~ 2 --1 C (z)= [z+O~o/Z] 

This purely oscillatory behavior might be related to the boson peak. 17-9~ 
In any case, utility of the present formulation remains to be seen until 

some ways can be found to deal with E(z) and Mir(z), 

4. C O N C L U D I N G  R E M A R K S  

In this paper we have presented an extension of the irreducible 
memory fmaction approach to the cases other than purely dissipative cases 
considered before. The work is still in its developing stage and much more 
remains to be done. Besides the task of finding some useful approximation 
methods for E(z) and M~r(z), as in the previous case, we still lack intuitive 
understanding about the way the opera tor /2(z)  is split in order to obtain 
the irreducible memory function. Nevertheless we hope to see more 
progress on both aspects in the future. 

822/87/5-6-2 
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